organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

2,2,7,7-Tetramethyl-1,2,3,6,7,8-hexahydrocinnolino[5,4,3-cde]cinnoline

Ju-Hua Peng,^a Wen-Juan Hao^b and Shu-Jiang Tu^{b*}

^aLianyungang Teachers' College, Lianyungang 222006, People's Republic of China, and ^bSchool of Chemistry and Chemical Engineering, Xuzhou Normal University, Xuzhou 221116, People's Republic of China Correspondence e-mail: laotu2001@263.net

Received 23 December 2008; accepted 25 December 2008

Key indicators: single-crystal X-ray study; T = 298 K; mean σ (C–C) = 0.004 Å; R factor = 0.052; wR factor = 0.179; data-to-parameter ratio = 13.6.

The asymmetric unit of the title compound, $C_{16}H_{20}N_4$, contains two half-molecules, which are completed by crystallographic inversion symmetry. The pyridazine rings are conjugated and the cyclohexane rings adopt envelope conformations.

Related literature

For general background, see: Ischikawa *et al.* (1992); Labovitz *et al.* (1990); Mizutani, Shiroshita, Okuda *et al.* (1989); Patterson (1992); Coghlan *et al.* (1989); Mizutani, Shiroshita, Sakaki *et al.* (1989b); Munro & Bit (1987); Inoue *et al.* (1993); Tutsumi *et al.* (1992); Yokomoto *et al.* (1992); Miyamoto *et al.* (1990). For bond-length data, see: Allen *et al.* (1987). For ring-puckering parameters, see: Cremer & Pople (1975).

Experimental

Crystal data $C_{16}H_{20}N_4$ $M_r = 268.36$ Monoclinic, $P2_1/n$

a = 12.819(4)	Å
b = 8.441 (3) Å	
c = 13.310 (4)	Å

$\beta = 95.462 \ (5)^{\circ}$
V = 1433.7 (8) Å ³
Z = 4
Mo $K\alpha$ radiation

Data collection

Bruker SMART CCD area-detector diffractometer Absorption correction: multi-scan (*SADABS*; Bruker, 1998) $T_{\rm min} = 0.975, T_{\rm max} = 0.984$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.052$ 185 parameters $wR(F^2) = 0.179$ H-atom parameters constrainedS = 1.04 $\Delta \rho_{max} = 0.18$ e Å $^{-3}$ 2518 reflections $\Delta \rho_{min} = -0.20$ e Å $^{-3}$

 $\mu = 0.08 \text{ mm}^{-1}$ T = 298 (2) K

 $R_{\rm int} = 0.048$

 $0.33 \times 0.28 \times 0.21 \text{ mm}$

7218 measured reflections

2518 independent reflections

1416 reflections with $I > 2\sigma(I)$

Data collection: *SMART* (Bruker, 1998); cell refinement: *SAINT* (Bruker, 1998); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *SHELXTL* (Sheldrick, 2008); software used to prepare material for publication: *SHELXTL*.

We thank the Natural Science Foundation of the China (No. 20672090) and the Natural Science Foundation of Jiangsu Province (No. BK2006033) for support.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HK2606).

References

- Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
- Bruker (1998). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Coghlan, M. J., Driekorn, B. A., Suhr, R. G. & Jourdan, G. P. (1989). European Patent No. 326328.
- Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.
- Inoue, S., Yasaki, A., Mochizuki, H., Tutsumi, H., Murata, M. & Sakane, K.
- (1993). Japanese Patent No. 05 213 951.
 Ischikawa, H., Umeda, T. & Kajikawa, K. (1992). Japanese Patent No. 04 187
 677
- Labovitz, J., Guilford, W., Liang, Y., Fang, L. & Patterson, T. (1990). European Patent No. 363 236.
- Miyamoto, K., Matsumoto, J. & Nakamura, S. (1990). Japanese Patent No. 02 096 570.
- Mizutani, M., Shiroshita, M., Okuda, H., Mito, N. & Sakaki, M. (1989). European Patent No. 320 782.
- Mizutani, M., Shiroshita, M., Sakaki, M., Mito, N. & Okuda, H. (1989). European Patent No. 320 793.
- Munro, D. & Bit, R. (1987). UK Patent No. 2 189 238.
- Patterson, T. G. (1992). US Patent No. 5 129 940.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Tutsumi, H., Terasawa, T., Barret, D., Mutata, M., Sakane, K., Yazaki, A. & Inoue, S. (1992). Japanese Patent No. 9 215 584.
- Yokomoto, M., Yazaki, A., Hayashi, N., Hatono, S., Inoue, S. & Kuramoto, Y. (1992). European Patent No. 4 700 578.

supplementary materials

Acta Cryst. (2009). E65, o238 [doi:10.1107/S1600536808043912]

2,2,7,7-Tetramethyl-1,2,3,6,7,8-hexahydrocinnolino[5,4,3-cde]cinnoline

J.-H. Peng, W.-J. Hao and S.-J. Tu

Comment

It is well known that six-membered nitrogen-containing heterocycles are abundant in numerous natural products that exhibit important biological properties. For example, cinnolines and their derivatives are widely used as agrochemical and pharmaceutical drugs (Ischikawa *et al.*, 1992; Labovitz *et al.*, 1990; Mizutani, Shiroshita, Okuda *et al.*, 1989; Patterson, 1992; Coghlan *et al.*, 1989; Mizutani, Shiroshita, Sakaki *et al.*, 1989; Munro & Bit, 1987). They can act as microbicides, pollen suppressants, fungicides and herbicides in agrochemistry. They can also be used as bactericides in pharmaceutical industry (Inoue *et al.*, 1993; Tutsumi *et al.*, 1992; Yokomoto *et al.*, 1992; Miyamoto *et al.*, 1990). The chemistry of cinnolines has received much attention based on the above facts.

The asymmetric unit of the title compound contains two-halves of centrosymmetric molecules (Fig. 1). The bond lengths (Allen *et al.*, 1987) and angles are within normal ranges. The pyridazine rings A (N1/N2/C1-C3/C2A) and C (N3/N4/C9-C11/C10B) are, of course, planar and they are oriented at a dihedral angle of 43.89 (3)° [symmetry codes: (A) 2 - x, -y, -z; (B) 1 - x, -y, -z]. The cyclohexene rings B (C1/C2/C5/C6/C3A/C4A) and D (C9/C10/C13/C14/C11B/C12B), having total puckering amplitudes, Q_T, of 0.579 (3) and 0.566 Å, respectively, half-chair conformations [φ = -72.92 (3)° and θ = 103.84 (4)°; φ = 110.31 (4)° and θ = 74.14 (4)°] (Cremer & Pople, 1975) [symmetry codes: (A) 2 - x, -y, -z].

Experimental

The title compound was prepared by the reaction of 3,4,6,7-tetrahydro- 3,3,6,6,9-pentamethyl-2*H*-xanthene-1,8(5*H*,9H)-dione (2 mmol) and hydrazine hydrate (8 mmol, 80%) in ethanol (8 ml), stirring at 353 K (yield; 88%, m.p. 562-563 K). Crystals suitable for X-ray analysis were obtained from an ethanol solution by slow evaporation.

Refinement

H atoms were positioned geometrically, with C-H = 0.97 and 0.96 Å for methylene and methyl H and constrained to ride on their parent atoms, with $U_{iso}(H) = xU_{eq}(C)$, where x = 1.5 for methyl H and x = 1.2 for methylene H atoms.

Figures

Fig. 1. The molecular structure of the title molecule, with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level [symmetry code (A): -x, -y, -z].

2,2,7,7-Tetramethyl-1,2,3,6,7,8-hexahydrocinnolino[5,4,3-cde]cinnoline

Crystal data	
$C_{16}H_{20}N_4$	$F_{000} = 576$
$M_r = 268.36$	$D_{\rm x} = 1.243 {\rm ~Mg~m}^{-3}$
Monoclinic, $P2_1/n$	Melting point = $562-563$ K
Hall symbol: -P 2yn	Mo $K\alpha$ radiation $\lambda = 0.71073$ Å
<i>a</i> = 12.819 (4) Å	Cell parameters from 1230 reflections
b = 8.441 (3) Å	$\theta = 2.3 - 23.2^{\circ}$
c = 13.310 (4) Å	$\mu = 0.08 \text{ mm}^{-1}$
$\beta = 95.462 \ (5)^{\circ}$	T = 298 (2) K
$V = 1433.7 (8) \text{ Å}^3$	Block, pale yellow
Z = 4	$0.33 \times 0.28 \times 0.21$ mm

Data collection

Bruker SMART CCD area-detector diffractometer	2518 independent reflections
Radiation source: fine-focus sealed tube	1416 reflections with $I > 2\sigma(I)$
Monochromator: graphite	$R_{\rm int} = 0.048$
T = 298(2) K	$\theta_{\text{max}} = 25.0^{\circ}$
ϕ and ω scans	$\theta_{\min} = 2.1^{\circ}$
Absorption correction: multi-scan (SADABS; Bruker, 1998)	$h = -15 \rightarrow 15$
$T_{\min} = 0.975, T_{\max} = 0.984$	$k = -9 \rightarrow 10$
7218 measured reflections	$l = -15 \rightarrow 14$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.052$	H-atom parameters constrained
$wR(F^2) = 0.179$	$w = 1/[\sigma^2(F_0^2) + 0.3048P]$ where $P = (F_0^2 + 2F_c^2)/3$
<i>S</i> = 1.04	$(\Delta/\sigma)_{max} < 0.001$
2518 reflections	$\Delta \rho_{max} = 0.18 \text{ e} \text{ Å}^{-3}$
185 parameters	$\Delta \rho_{min} = -0.20 \text{ e } \text{\AA}^{-3}$
Primary atom site location: structure-invariant direct methods	Extinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$
N1	1.11488 (18)	0.2369 (3)	0.00759 (19)	0.0510(7)
N2	1.16426 (18)	0.1239 (3)	-0.04672 (19)	0.0513 (7)
N3	0.50653 (19)	0.2577 (3)	-0.08920 (17)	0.0469 (6)
N4	0.56253 (19)	0.1517 (3)	-0.14224 (17)	0.0470 (6)
C1	1.0250 (2)	0.2044 (3)	0.04438 (19)	0.0394 (7)
C2	0.97626 (18)	0.0553 (3)	0.02796 (18)	0.0350 (7)
C3	1.1205 (2)	-0.0146 (3)	-0.06568 (19)	0.0408 (7)
C4	1.1709 (2)	-0.1336 (3)	-0.1275 (2)	0.0522 (8)
H4A	1.2463	-0.1185	-0.1187	0.063*
H4B	1.1479	-0.1161	-0.1982	0.063*
C5	0.9742 (2)	0.3236 (4)	0.1053 (2)	0.0483 (8)
H5A	0.9906	0.4287	0.0819	0.058*
H5B	1.0030	0.3146	0.1752	0.058*
C6	0.8543 (2)	0.3047 (3)	0.0998 (2)	0.0456 (7)
C7	0.8054 (2)	0.3422 (4)	-0.0065 (2)	0.0602 (9)
H7A	0.8324	0.2704	-0.0536	0.090*
H7B	0.8224	0.4490	-0.0237	0.090*
H7C	0.7307	0.3308	-0.0091	0.090*
C8	0.8112 (3)	0.4183 (4)	0.1746 (3)	0.0705 (10)
H8A	0.7364	0.4078	0.1711	0.106*
H8B	0.8290	0.5251	0.1582	0.106*
H8C	0.8411	0.3935	0.2416	0.106*
С9	0.4617 (2)	0.2110 (3)	-0.00971 (19)	0.0380 (7)
C10	0.47112 (19)	0.0524 (3)	0.02548 (18)	0.0361 (7)
C11	0.5739 (2)	0.0028 (3)	-0.11235 (19)	0.0386 (7)
C12	0.6346 (2)	-0.1106 (3)	-0.1700 (2)	0.0460 (8)
H12A	0.7083	-0.1023	-0.1463	0.055*
H12B	0.6267	-0.0816	-0.2408	0.055*
C13	0.3987 (2)	0.3244 (3)	0.0462 (2)	0.0443 (7)
H13A	0.3267	0.3235	0.0162	0.053*
H13B	0.4261	0.4306	0.0394	0.053*
C14	0.4010 (2)	0.2827 (3)	0.1591 (2)	0.0448 (8)
C15	0.5115 (3)	0.3042 (4)	0.2106 (2)	0.0646 (10)

supplementary materials

H15A	0.5326	0.4127	0.2047	0.097*
H15B	0.5590	0.2368	0.1790	0.097*
H15C	0.5124	0.2767	0.2807	0.097*
C16	0.3261 (3)	0.3920 (4)	0.2079 (2)	0.0652 (10)
H16A	0.3267	0.3663	0.2782	0.098*
H16B	0.2566	0.3788	0.1754	0.098*
H16C	0.3480	0.5000	0.2010	0.098*

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
N1	0.0418 (15)	0.0440 (15)	0.0675 (17)	-0.0085 (12)	0.0070 (13)	-0.0044 (13)
N2	0.0442 (14)	0.0409 (15)	0.0702 (17)	-0.0060 (12)	0.0122 (12)	-0.0011 (13)
N3	0.0583 (16)	0.0392 (14)	0.0445 (14)	-0.0001 (12)	0.0117 (12)	0.0062 (11)
N4	0.0593 (16)	0.0392 (15)	0.0442 (14)	-0.0027 (12)	0.0133 (12)	0.0036 (11)
C1	0.0385 (16)	0.0370 (17)	0.0416 (16)	-0.0029 (13)	-0.0025 (13)	0.0016 (13)
C2	0.0322 (15)	0.0314 (15)	0.0402 (16)	-0.0019 (11)	-0.0026 (12)	0.0033 (11)
C3	0.0413 (16)	0.0387 (17)	0.0424 (16)	-0.0017 (14)	0.0045 (13)	0.0057 (13)
C4	0.0490 (18)	0.050 (2)	0.0595 (19)	0.0021 (15)	0.0164 (15)	0.0029 (15)
C5	0.0491 (18)	0.0458 (18)	0.0488 (17)	-0.0039 (15)	-0.0014 (14)	-0.0070 (14)
C6	0.0457 (17)	0.0406 (17)	0.0507 (17)	0.0024 (14)	0.0067 (14)	-0.0028 (14)
C7	0.055 (2)	0.052 (2)	0.071 (2)	0.0062 (16)	-0.0062 (16)	0.0042 (17)
C8	0.068 (2)	0.061 (2)	0.084 (3)	0.0038 (19)	0.0189 (19)	-0.0165 (19)
C9	0.0411 (16)	0.0354 (17)	0.0370 (15)	-0.0034 (13)	0.0004 (12)	0.0020 (13)
C10	0.0367 (15)	0.0380 (17)	0.0331 (15)	-0.0046 (12)	0.0008 (11)	0.0016 (11)
C11	0.0412 (16)	0.0380 (17)	0.0366 (15)	-0.0045 (13)	0.0033 (12)	0.0039 (13)
C12	0.0470 (17)	0.0492 (19)	0.0429 (16)	0.0018 (14)	0.0091 (13)	0.0031 (14)
C13	0.0459 (17)	0.0349 (16)	0.0518 (17)	-0.0025 (13)	0.0030 (13)	0.0026 (14)
C14	0.0489 (18)	0.0416 (18)	0.0438 (16)	0.0031 (14)	0.0053 (14)	-0.0027 (13)
C15	0.064 (2)	0.061 (2)	0.065 (2)	-0.0014 (18)	-0.0099 (17)	-0.0108 (18)
C16	0.081 (2)	0.060 (2)	0.057 (2)	0.0161 (19)	0.0187 (18)	-0.0003 (17)

Geometric parameters (Å, °)

N1—C1	1.322 (3)	C8—H8A	0.9600
N1—N2	1.386 (3)	C8—H8B	0.9600
N2—C3	1.311 (3)	C8—H8C	0.9600
N3—C9	1.312 (3)	C9—C10	1.420 (4)
N3—N4	1.382 (3)	С9—С13	1.495 (4)
N4—C11	1.323 (4)	C10—C10 ⁱⁱ	1.373 (5)
C1—C2	1.413 (3)	C10—C11 ⁱⁱ	1.419 (3)
C1—C5	1.482 (4)	C11—C10 ⁱⁱ	1.419 (3)
C2—C2 ⁱ	1.371 (5)	C11—C12	1.491 (4)
C2—C3 ⁱ	1.423 (3)	C12—C14 ⁱⁱ	1.534 (4)
C3—C2 ⁱ	1.423 (3)	C12—H12A	0.9700
C3—C4	1.485 (4)	C12—H12B	0.9700
C4—C6 ⁱ	1.533 (4)	C13—C14	1.541 (4)

C4—H4A	0.9700	C13—H13A	0.9700
C4—H4B	0.9700	C13—H13B	0.9700
C5—C6	1.540 (4)	C14—C16	1.521 (4)
С5—Н5А	0.9700	C14—C15	1.525 (4)
С5—Н5В	0.9700	C14—C12 ⁱⁱ	1.534 (4)
C6—C8	1.524 (4)	C15—H15A	0.9600
C6—C7	1.525 (4)	C15—H15B	0.9600
C6—C4 ⁱ	1.533 (4)	C15—H15C	0.9600
С7—Н7А	0.9600	C16—H16A	0.9600
С7—Н7В	0.9600	C16—H16B	0.9600
С7—Н7С	0.9600	C16—H16C	0.9600
C1—N1—N2	120.5 (2)	H8A—C8—H8C	109.5
C3—N2—N1	120.4 (2)	H8B—C8—H8C	109.5
C9—N3—N4	120.4 (2)	N3—C9—C10	121.3 (2)
C11—N4—N3	120.6 (2)	N3—C9—C13	120.5 (2)
N1—C1—C2	121.0 (2)	C10—C9—C13	118.2 (2)
N1—C1—C5	120.4 (2)	$C10^{ii}$ — $C10$ — $C11^{ii}$	118.1 (3)
C2—C1—C5	118.6 (2)	C10 ⁱⁱ —C10—C9	118.5 (3)
$C2^{i}$ — $C2$ — $C1$	118.5 (3)	C11 ⁱⁱ —C10—C9	123.4 (2)
$C2^{i}$ — $C2$ — $C3^{i}$	118.3 (3)	N4	121.0 (2)
C1—C2—C3 ⁱ	123.2 (2)	N4	120.2 (2)
N2—C3—C2 ⁱ	121.2 (2)	C10 ⁱⁱ —C11—C12	118.8 (2)
N2-C3-C4	120.5 (2)	C11—C12—C14 ⁱⁱ	112.6 (2)
C2 ⁱ —C3—C4	118.2 (2)	C11—C12—H12A	109.1
C3—C4—C6 ⁱ	113.0 (2)	C14 ⁱⁱ —C12—H12A	109.1
C3—C4—H4A	109.0	C11—C12—H12B	109.1
C6 ⁱ —C4—H4A	109.0	C14 ⁱⁱ —C12—H12B	109.1
C3—C4—H4B	109.0	H12A—C12—H12B	107.8
C6 ⁱ —C4—H4B	109.0	C9—C13—C14	112.2 (2)
H4A—C4—H4B	107.8	С9—С13—Н13А	109.2
C1—C5—C6	113.1 (2)	C14—C13—H13A	109.2
C1—C5—H5A	109.0	С9—С13—Н13В	109.2
С6—С5—Н5А	109.0	C14—C13—H13B	109.2
C1—C5—H5B	109.0	H13A—C13—H13B	107.9
C6—C5—H5B	109.0	C16—C14—C15	109.4 (3)
H5A—C5—H5B	107.8	C16—C14—C12 ⁱⁱ	109.2 (2)
C8—C6—C7	109.5 (3)	C15—C14—C12 ⁱⁱ	110.0 (2)
C8—C6—C4 ⁱ	109.7 (2)	C16—C14—C13	108.9 (2)
C7—C6—C4 ⁱ	110.0 (2)	C15—C14—C13	110.0 (2)
C8—C6—C5	109.0 (2)	C12 ⁱⁱ —C14—C13	109.3 (2)
C7—C6—C5	110.1 (2)	C14—C15—H15A	109.5
C4 ⁱ —C6—C5	108.6 (2)	C14—C15—H15B	109.5
С6—С7—Н7А	109.5	H15A—C15—H15B	109.5
С6—С7—Н7В	109.5	C14—C15—H15C	109.5
H7A—C7—H7B	109.5	H15A—C15—H15C	109.5

supplementary materials

С6—С7—Н7С	109.5	H15B—C15—H15C	109.5
Н7А—С7—Н7С	109.5	C14—C16—H16A	109.5
Н7В—С7—Н7С	109.5	C14—C16—H16B	109.5
С6—С8—Н8А	109.5	H16A—C16—H16B	109.5
С6—С8—Н8В	109.5	C14—C16—H16C	109.5
H8A—C8—H8B	109.5	H16A—C16—H16C	109.5
С6—С8—Н8С	109.5	H16B—C16—H16C	109.5

Symmetry codes: (i) -*x*+2, -*y*, -*z*; (ii) -*x*+1, -*y*, -*z*.

